- Kategorie
-
Praktyczna algebra liniowa dla analityków danych. Od podstawowych koncepcji do użytecznych aplikacji w Pythonie
Symbol:
62.06
Wysyłka w ciągu | 2-5 dni roboczych |
Cena przesyłki | 12 |
Dostępność | 1 szt. |
Kod kreskowy | |
ISBN | 978-83-289-0261-9 |
EAN | 9788328902619 |
Pozornie nie dzieje się nic złego, jeśli inżynier lub analityk danych nie rozumie algebry liniowej. Może korzystać z już istniejących narzędzi i nie przejmować się szczegółami ich implementacji. Warto jednak dokładnie poznać algorytmy używane w nauce o danych i dostosować do swoich potrzeb istniejące metody obliczeniowe, tutaj więc nowoczesna algebra liniowa okazuje się nieodzowna. Jeśli chcesz ją poznać w nowoczesnej, praktycznej formie, najlepiej posłużyć się kodem i zastosowaniem algebry liniowej w analizie danych czy symulacjach numerycznych.
To książka przeznaczona dla osób, które pracują ze zbiorami danych. Jest praktycznym przewodnikiem po koncepcjach algebry liniowej, pomyślanym tak, by ułatwić ich zrozumienie i zastosowanie w użytecznych obliczeniach. Poszczególne zagadnienia przedstawiono za pomocą kodu Pythona, wraz z przykładami ich wykorzystania w nauce o danych, uczeniu maszynowym, uczeniu głębokim, symulacjach i przetwarzaniu danych biomedycznych. Dzięki podręcznikowi nauczysz się arytmetyki macierzowej, poznasz istotne rozkłady macierzy, w tym LU i QR, a także rozkład według wartości osobliwych, zapoznasz się też z takimi zagadnieniami jak model najmniejszych kwadratów i analiza głównych składowych.
To książka przeznaczona dla osób, które pracują ze zbiorami danych. Jest praktycznym przewodnikiem po koncepcjach algebry liniowej, pomyślanym tak, by ułatwić ich zrozumienie i zastosowanie w użytecznych obliczeniach. Poszczególne zagadnienia przedstawiono za pomocą kodu Pythona, wraz z przykładami ich wykorzystania w nauce o danych, uczeniu maszynowym, uczeniu głębokim, symulacjach i przetwarzaniu danych biomedycznych. Dzięki podręcznikowi nauczysz się arytmetyki macierzowej, poznasz istotne rozkłady macierzy, w tym LU i QR, a także rozkład według wartości osobliwych, zapoznasz się też z takimi zagadnieniami jak model najmniejszych kwadratów i analiza głównych składowych.
Autor:
Mike Cohen
Oprawa:
miękka
Rok wydania:
2023
Format:
16,5x23,5
Data wydania:
2023-12-15
Status:
Nowość
Wydawca:
Helion
Stron:
288
Wydanie:
1