• Kategorie
  • Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch

60.37
szt. Do przechowalni
Wysyłka w ciągu 2-5 dni roboczych
Cena przesyłki 12
Paczkomaty InPost 12
InPost Kurier 14
Kurier DHL 19.7
Dostępność 6 szt.
ISBN 978-83-289-1234-2
Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania ― nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu.

Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym.
Autor:
Adi Polak
Oprawa:
miękka
Rok wydania:
2024
Format:
16,5x23,5
Data wydania:
2024-08-01
Status:
Nowość
Wydawca:
Helion
Stron:
264
Wydanie:
1